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Abstract: Bicyclic thiazolidine lactam 1 was used as a model system for developing synthetic 
methodology into ~-tm'n mimics that would contain side chain functionality. Treatment of a mixture of 1 
and a non-enolizable aldehyde at -100 *C with LDA resulted in a good yield of the aldol ~d,_,ct when 
aromatic aldehydes we~'e used. Radical dehydroxylation of the pentafluorophenyicarbonate de0rivative of 
the aldol a_dd~ct with (n-Bu)3SnH and AIBN gave a single isomer of the C-2 alkylated bicyelic 5,5- 
thiaTolidine lactmn. This methodology was applied to the synthesis of the 2-substituted spiro bicyclic 
thiazofidine laclam type II' IS-turn mimic 14. © 1997 Elsevier Science Ltd. All fights reserved. 

Non-peptide secondary structural mimics and conformational constraints have proven to be extremely 

useful tools for studying the biologically active conformations of peptides. 1,2 In this regard, there has been 

considerable work carried out on the design and synthesis of fl-tum mimics.2, 3 One general type of 13-turn mimic 

that has been developed and utilized is the bicyclic lactams in which two (¥2, $3) of the four torsion angles 

which define a ~turn are restricted. 4-8 We have previously reported on the utility of the bicyclic 5,5-thiazolidine 

lactam system as a type 11 ~turn mimic (Figure 1). 5 

Although bicyclic lactams such as the bicyclic 5,5-thiazolidine lactam system have been shown to be good 

mimics of li-turns, the utility of the mimics developed to date has been limited because they have not possessed, 

in most instances, the side chain functionality of the i+1 and i+2 amino acid turn residues that they are intending 

to mimic. Since this usually has been because of synthetic difficulties, synthetic methods to incorporate amino 

acid side chain functionality at the C-2 and C-7 positions of the bicyclic lactam system have been sought to 

expand the utility of this particular turn mimic. In this report we describe a method which allows the 

incorporation of an aryl side chain functionality at the C-2 position. 
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Figure 1. Comparison of the bicyclic 5,5-thiazolidine lactam system (A) and a type II [3-turn (B). 
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Since it had already been shown that substitution at C-7 could be achieved conveniently by using an or- 

substituted aspartic acid aldehyde in the synthetic route used to obtain the bicyclic 5,5-thiazofidine lactam 

system,9,10 an investigation into obtaining the 2-substituted bicyclic lactam system was undertaken. 11 We 

envisioned utilizing the inherent chirafity of the bridgehead carbon to stereoselectively direct the alkylation at the 

2-position. Model compound 1 was synthesized in order to explore this approach. 12 NOE experiments (Figure 

2A) were used to assign the stereochemistry at the newly formed bridgehead center. 

O CO2Me O CO2Me O CO2Me 
1 2 3 4 

Although Pattenden et al.13 had been successful in a-alkylating thiazolidin¢ 2 at -90 °C using LDA as the 

base, our attempts at alkylating 1 at C-2 by treating this material at -I00 °C with either LDA or sodium 

hexamethyldisflazide followed by an alkyl halide resulted only in the formation of the [3--elimination product 3. 

This result was consistent with what Seebach et al.14 observed in the attempted alkylation of thiazolidine 4 with 
alkyl halides. Since Seebach and Weber 15 had observed that non-enolizable aldehydes add with high 

diastemoselectivity to the enolate of 4 formed with LDA, we attempted the analogous reaction on I. Treatment 

of a solution of I and benzaldehyde with LDA at -I00 °(2 gave adduct 5 in excellent yield as a I: I mixture of two 

diastereoisomers (Scheme I). 16 Although epimers at C-2 were also possible, the results obtained below indicate 

that only one is formed. Compound I was reacted with a variety of other non-enolizable aldehydes in a similar 

manner (Scheme I). When aldehydes N-tert-butoxycarbonyl-indole-3-carboxaldehyde and cinnamaldehyde were 

used, good yields of the corresponding aldol adducts 6 and 7 were obtained. 17 In contrast, the reaction of I 

with either methyl glyoxylate, pivaldehyde, or formaldehyde gave in each case a complex mixture from which 

only about 10 % of the desired aldol product (8-10) could be isolated. 
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Figure 2. NOEs observed for the bicyclic thiazolidine lactams 1 (A) in C6D6 and 11 (B) in CDCI 3. 

Compounds 5 and 6 were subjected to the radical dehydroxylation conditions of Barton and 

Jaszberenyi 18 (Scheme I) to give the desired C-2 alkylated bicyclic 5,5-thiazolidine lactams 11 and 12, 

respectively. 19 Each product was obtained as a single isomer. The absolute configuration of the 2-position of 11 

was assigned as S on the basis of NOE difference experiments (Figure 2B). The results indicated that formation 

of the aldol adduct occurred only from the sterically less encumbered exo face of the enolate generated from 1. 
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Scheme 1 
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5: R = P h ( 9 3 % )  11:R=Ph 
6: R = N-Boc-3-indolyl (73 %) 12: R = N-Boc-3-indolyl 
7: R = PhCH--CH (53 %) 
8: R = COjMe (-10 %) 
9: R = (CHa)3C ( -10%) 

10: R=  H ( -10%) 

The above methodology was used to functionalize the analogous position of spiro bicyclic thiazolidine 

lactam 13, 20 thereby providing the substituted type n '  [I-turn mimic 14 (Scheme 2). 21 The structure of 14 was 

confh'mod through single-crystal X-ray analysis. 22 This result further demonstrates the viability of the above 

methodology to directly functionalize the C-2 position of bicyclic thiazolidine lactam ~-turn mimics already 

fuuctionalized at the C-7 position. Furthermore, the introduction of the C-2 side chain can he achieved 

stereospecifically, since the chirality of the bridgehead carbon directs the stereochemical outcome. 

Scheme 2 
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